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Abstract

The Darboux transformation on matrix solutions to the generalized coupled
dispersionless integrable system based on a non-Abelian Lie group is studied,
and the solutions are shown to be expressed in terms of quasideterminants.
As an explicit example, the Darboux transformation on scalar solutions to the
system based on the Lie group SU(2) is discussed in detail, and the solutions
are shown to be expressed as ratios of determinants.

PACS numbers: 02.30.Zz, 02.30.Ik

1. Introduction

There has been a considerable interest in dispersionless integrable hierarchies for the last
couple of decades, partly because of their emergence in diverse areas of mathematical and
theoretical physics such as quantum field theory, conformal field theory, string theory, soliton
theory, etc (see e.g. [1–7]). These integrable systems arise as a quasi-classical limit of the
ordinary integrable systems. In other words, the quasi-classical limit corresponds to the
solutions which slowly depend on the independent variables resulting in the elimination of
the dispersion term of the original integrable equation. In recent past, the coupled
dispersionless integrable system and its generalization has also attracted a great deal of interest
because of its nice integrability structure and soliton solutions [8–15]. However, it should
be mentioned here that the coupled dispersionless integrable system introduced in [8–13] is
referred to as dispersionless in the sense that it does not contain the dispersion term and not in
the sense of quasi-classical limit of some ordinary integrable systems where the dispersion term
is eliminated by taking an appropriate limit. The coupled dispersionless integrable system and
its generalization is solvable by the inverse scattering method, possesses an infinite number of
conservation laws and has the Painleve property [8–15]. For the case of Lie group SU(2), the

1751-8113/09/065203+11$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/6/065203
mailto:mhassan@physics.pu.edu.pk
mailto:mhassan@maths.gla.ac.uk
http://stacks.iop.org/JPhysA/42/065203


J. Phys. A: Math. Theor. 42 (2009) 065203 M Hassan

multi-soliton solutions have been investigated using Backlund and Darboux transformations
[16, 17].

In this paper, we study the Darboux transformation of the generalized coupled
dispersionless integrable system based on the Lie group G and obtain its solutions expressed in
terms of quasideterminants of Gelfand and Retakh [18–20]. For the special case ofG = SU(2),
we show that the scalar solutions to the system are expressed as ratios of determinants showing
the transition from the matrix case to the scalar case. We compare our results with those
of [17] and also with the previously known results of the sine-Gordon system. For the
construction of multi-solitons we use the method of Darboux matrix, and by iteration of the
Darboux transformation we obtain the quasideterminant solutions to the generalized coupled
dispersionless integrable system.

The layout of this paper is as follows. In section 2, we give a review of the generalized
coupled dispersionless integrable system by writing its Lagrangian, Lagrange equations of
motion and the Lax pair. In section 2, we also introduce the notion of quasideterminants
which shall be used in section 3 to express the solutions. In section 3, we define a
Darboux transformation via a Darboux matrix on matrix solutions to the generalized coupled
dispersionless integrable system and express the solutions to the system in a closed form as
quasideterminants. In section 4, we take an explicit example of the system when the underlying
Lie group is SU(2) and write its multi-soliton solutions as ratios of determinants by using the
Darboux transformation already discussed in section 3. At the end we compare our results
with the already-known results and make concluding remarks in section 5.

2. The generalized coupled dispersionless integrable system

The generalized coupled dispersionless integrable system based on the non-Abelian Lie group
G is a classical Lagrangian field theory defined by the following action functional [12]:

I =
∫

dt dxL(S, ∂xS, ∂tS), (2.1)

with the Lagrangian density defined by

L = Tr
(

1
2∂xS∂tS − 1

3G[S, [∂xS, S]]
)
, (2.2)

where S is a matrix field and G is a constant matrix; taking values in the non-Abelian Lie
algebra g of the Lie group G. Let us introduce a basis of anti-Hermitian generators T a for g

with real, totally antisymmetric structure constants f abc and normalization given by

[T a, T b] = f abcT c, Tr(T aT b) = −δab. (2.3)

For any X ∈ g we write

X = T aXa, Xa = −Tr(T aX). (2.4)

The matrix fields S and G of the generalized coupled dispersionless system (2.2 ) take values
in the Lie algebra g, therefore, we write

S = φaT a, G = κaT a,

where φ = φ(x, t) is a vector field with components {φa, a = 1, 2, . . . , dim g} and κ is a
constant vector with components {κa, a = 1, 2, . . . , dim g}.

The Lagrange equation of motion resulting from the action is given by

∂t∂xS − [[S,G], ∂xS] = 0. (2.5)

The field equation (2.5) is known as the generalized coupled dispersionless integrable system
based on a Lie group G. Equation (2.5) has an n × n AKNS (Ablowitz–Kaup–Newell–Segur)
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representation, and the nonlinearity of the equation is due to the non-Abelian character of the
underlying Lie group. Equation (2.5) is a generalization of the coupled dispersionless equation
originally introduced in [8] for G = SL(2, R) and SU(2). For G = SL(2, R), equation (2.5)
reduces to

∂t∂xq + ∂x(rs) = 0, ∂t∂xr − 2∂xqr = 0, ∂t∂xs − 2∂xqs = 0,

where q, r and s are the real valued functions of x and t. For G = SU(2), the system (2.5) is
equivalent to

∂t∂xq + r∂x r̄ = 0, ∂t∂xr − 2∂xqr = 0, ∂t ∂x r̄ − 2∂xqr̄ = 0, (2.6)

where r is a complex valued function and r̄ denotes the complex conjugation of r. The system
(2.6) is in fact equivalent to the Pohlmeyer–Lund–Regge system [10]. If r is real then the
system (2.6) is the one originally proposed in [8] and is equivalent to the sine-Gordon equation
[9]. With reference to the Darboux transformation, we shall discuss it in detail in section 4.

The generalized coupled dispersionless integrable system (2.5) can be expressed as the
compatibility condition of the following Lax pair [12]:

∂xψ = U(x, t, λ)ψ, (2.7)

∂tψ = V (x, t, λ)ψ, (2.8)

where ψ ∈ G, λ is the spectral parameter and the matrix fields U(x, t, λ) and V (x, t, λ) are
given by

U(x, t, λ) = λ∂xS, V (x, t, λ) = [S,G] + λ−1G.

The compatibility condition of (2.7) and (2.8) is the zero-curvature condition for the matrices
U(x, t, λ) and V (x, t, λ)

∂tU(x, t, λ) − ∂xV (x, t, λ) + [U(x, t, λ), V (x, t, λ)] = 0, (2.9)

which is equivalent to the equation of motion (2.5). In the following section, we define the
Darboux transformation via a Darboux matrix on matrix solutions ψ of the Lax pair (2.7)–
(2.8). To write down the explicit expressions for matrix solutions to the generalized coupled
dispersionless integrable system, we will use the notion of a quasideterminant introduced by
Gelfand and Retakh [18–20].

Let X be an n×n matrix over a ring R (non-commutative, in general). For any 1 � i, j � n,
let ri be the ith row and cj be the j th column of X. The matrix X has n2 quasideterminants
denoted by |X|ij for i, j = 1, . . . , n and are defined by

|X|ij = xij − r
j

i (Xij )−1ci
j , (2.10)

where xij is the ij th entry of X, r
j

i represents the ith row of X without the j th entry, ci
j

represents the j th column of X without the ith entry and Xij is the submatrix of X obtained by
removing from X the ith row and the j th column. The quasideterminats are also denoted by
the following notation:

|X|ij =
∣∣∣∣∣∣
Xij ci

j

r
j

i

xij

∣∣∣∣∣∣ . (2.11)

If the entries of the matrix X all commute, then

|X|ij = (−1)i+j det X

det Xij
. (2.12)
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For a detailed account of quasideterminants and their properties see e.g. [18–20]. In this
paper, we will consider only quasideterminants that are expanded about an n × n matrix over
a commutative ring. In our case the ring R is the (non-commutative) ring of n × n matrices
over another commutative ring. Let(

A B

C D

)
be a block decomposition of any N ×N matrix where the matrix D is n×n and A is invertible.
The quasideterminant expanded about the matrix D is defined by∣∣∣∣∣A B

C D

∣∣∣∣∣ = D − CA−1B. (2.13)

3. Darboux transformation

The Darboux transformation on the matrix solutions of the Lax pair (2.7)–(2.8) is defined in
terms of an n×n matrix D(x, t, λ), called the Darboux matrix. The Darboux matrix connects
the two matrix solutions of the Lax pair (2.7)–(2.8), such that the Lax pair is covariant under
the Darboux transformation (see e.g. [22–28]). Let us denote the new matrix solution to the
Lax pair (2.7)–(2.8) by ψ[1], so that the Darboux transformation is defined by

ψ[1] = D(x, t, λ)ψ. (3.1)

For the present case, we make the following ansatz for the Darboux matrix:

D(x, t, λ) = λ−1I − M(x, t), (3.2)

where M(x, t) is some n × n matrix field to be determined and I is an n × n identity matrix.
For the covariance of the Lax pair, we require that

∂xψ[1] = λ∂xS[1]ψ[1], (3.3)
∂tψ[1] = [S[1],G[1]]ψ[1] + λ−1G[1]ψ[1], (3.4)

where S[1] and G[1] are the Darboux transformed matrix fields defined by

S[1] = S − M,

G[1] = G (constant matrix),
(3.5)

such that the matrix M is required to satisfy the following conditions:

∂xMM = [∂xS,M], (3.6)
∂tM = [[S,G],M] + [G,M]M. (3.7)

The next step is to determine the matrix M in terms of a particular solution of the Lax pair,
such that the M satisfies conditions (3.6) and (3.7). For this purpose, we proceed as follows.

Let λ1, . . . , λn be non-zero, distinct real or complex constant parameters and e1, . . . , en

be constant column vectors such that

� = (ψ(λ1)e1, . . . , ψ(λn)en) = (θ1, . . . , θn) (3.8)

be an invertible n×n matrix. Each column θi = ψ(λi)ei of the matrix � is a column solution
of the Lax pair (2.7) and (2.8) at λ = λi , i.e. the columns θi, i = 1, . . . , n satisfy

∂xθi = λi∂xSθi, (3.9)
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∂tθi = [S,G]θi + λ−1
i Gθi. (3.10)

Let us define an invertible constant diagonal matrix with entries being the eigenvalues λi

corresponding to the eigenvectors θi :


 = diag(λ1, . . . , λn). (3.11)

The Lax pair (2.7)–(2.8) can now be written in the matrix form as

∂x� = ∂xS�
, (3.12)

∂t� = [S,G]� + G�
−1, (3.13)

where � is a particular matrix solution of the Lax pair with a matrix 
 of particular eigenvalues.
Now we show that the matrix M = �
−1�−1 expressed in terms of the particular matrix

solution � of the Lax pair (2.7)–(2.8) satisfies conditions (3.6) and (3.7) on the matrix M
imposed by the covariance of the Lax pair under the Darboux transformation (3.1) and (3.5).
For this purpose, let us take the x derivative of the matrix M = �
−1�−1

∂xM = ∂x�
−1�−1 + �
−1∂x�
−1,

= ∂xS − �
−1�−1∂xS�
�−1,

= ∂xS − M∂xSM−1, (3.14)

which is equation (3.6). Now take the t derivative of M = �
−1�−1 to get

∂tM = ∂t�
−1�−1 + �
−1∂t�
−1,

= [S,G]�
−1�−1 + G�
−2�−1 − �
−1�−1[S,G] − �
−1�−1G�
−1�−1,

= [S,G]M + GM2 − M[S,G] − MGM,

= [[S,G],M] + [G,M]M, (3.15)

which is equation (3.7). This shows that the matrix M = �
−1�−1 satisfies conditions (3.6)
and (3.7). So we have established that the transformation

ψ[1] = D(x, t, λ)ψ = (λ−1I − �
−1�−1)ψ (3.16)

constitutes the Darboux transformation on the matrix solution ψ of the Lax pair (2.7)–(2.8) of
the generalized coupled dispersionless integrable system (2.5). The corresponding Darboux
transformations on the matrix fields S and G are

S[1] = S − �
−1�−1,

G[1] = G.
(3.17)

By introducing the notations ψ(1) = λ−1ψ and �(1) = �
−1, the one-fold Darboux
transformations (3.16) and (3.17) can also be expressed in terms of quasideterminants as

ψ[1] =
∣∣∣∣∣∣

� ψ

�(1) ψ(1)

∣∣∣∣∣∣ , (3.18)

S[1] = S +

∣∣∣∣∣ � I

�(1) O

∣∣∣∣∣ , (3.19)

where O is an n×n null matrix. The iteration of the Darboux transformation N times gives the
quasideterminant matrix solution to the generalized coupled dispersionless integrable system
(2.5). For each k = 1, 2, . . . , N , let �k be an invertible matrix solution of the Lax pair

5
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(2.7)–(2.8) at 
 = 
k . Now using the notations �(k) = �
−k,�[0] = �1, ψ[0] = ψ and
for N � 1 we write

ψ[N ] = ψ[N − 1] − �(1)[N − 1] (�[N − 1])−1 ψ(1)[N − 1],

=

∣∣∣∣∣∣∣∣∣∣∣

�1 · · · �N ψ

...
. . .

...
...

�
(N−1)
1 · · · �

(N−1)
N ψ(N−1)

�
(N)
1 · · · �

(N)
N

ψ(N)

∣∣∣∣∣∣∣∣∣∣∣
. (3.20)

Similarly the expression for S[N ] is

S[N ] = S −
N−1∑
j=1

�[j ](1) (�[j ])−1 ,

= S +

∣∣∣∣∣∣∣∣∣∣∣∣∣

�1 · · · �N O

...
. . .

...
...

�
(N−2)
1 · · · �

(N−2)
N O

�
(N−1)
1 · · · �

(N−1)
N I

�
(N)
1 · · · �

(N)
N

O

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.21)

These results can be proved by induction and the proof is identical to that for non-commutative
KP equation (see e.g. [20, 21] ).

4. The SU (2) system

In order to get explicit solutions and compare our results with the already-known soliton
solutions of the coupled dispersionless integrable system, we proceed as follows. Let us
make general remarks about the case when G = SU(n) and then focus on the specific case of
G = SU(2). The Lie group G = SU(n) consists of unimodular anti-Hermitian n×n matrices.
Since the matrix fields S and G are valued in the Lie algebra su(n) of the Lie group SU(n),
therefore,

S† = −S, G† = −G,

Tr S = 0, Tr G = 0.
(4.1)

In order to have S[1] and G[1] to be valued in su(n), we need to have M† = −M and
Tr M = 0. For the particular solutions θi at λ = λi , let us compute

∂x

(
θ
†
i θj

) = λ̄iθ
†
i ∂xS

†θj + λjθ
†
i ∂xSθj ,

∂x

(
θ
†
i θj

) = θ
†
i ([S,G]† + [S,G])θj + λ̄−1

i θ
†
i G

†θj + λ−1
j θ

†
i Gθj .

(4.2)

Since S and G are anti-Hermitian, therefore, we get

∂x

(
θ
†
i θj

) = ∂t

(
θ
†
i θj

) = 0, (4.3)

when λi �= λj (i.e. λ̄i = λj ). Also from the definition of the matrix M, we can calculate

θ
†
i (M

† + M)θj = (
λ̄−1

i + λ−1
j

)
θ
†
i θj , (4.4)

which implies

θ
†
i θj = 0, (4.5)
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when λi �= λj . Given this, we conclude that the column vectors θi are all linearly independent
and condition (4.5) holds at every point of space and time.

For the system with G = SU(2), the corresponding equation of motion consists of the
hierarchy of the localized induction equation of a thin vortex filament which is equivalent to the
Heisenberg spin equation and the hierarchy of dispersionless equations which are equivalent
to the Pohlmeyer–Lund–Regge system and the sine-Gordon equation. Here we shall consider
the coupled dispersionless integrable system which is equivalent to the sine-Gordon equation
[8]. Let us introduce a vector φ = (φ1, φ2, φ3) in such a way that the matrix field S is defined
by

S = i

(
φ3 φ1 − iφ2

φ1 + iφ2 −φ3

)
, (4.6)

which is traceless and anti-Hermitian. The matrices U and V are then given by

U = iλ

(
∂xφ

3 ∂xφ
1 − i∂xφ

2

∂xφ
1 + i∂xφ

2 −∂xφ
3

)
,

V =
(

0 φ1 − iφ2

−φ1 − iφ2 0

)
− i

2λ

(
1 0
0 −1

)
.

(4.7)

By writing φ1 = r, φ2 = 0, φ3 = q, we get the coupled dispersionless integrable system of
[8]

∂x∂tq + 2∂xrr = 0, ∂x∂t r − 2∂xqr = 0. (4.8)

The soliton solutions to this system have been computed in [17] by using Backlund and
Darboux transformations. In [17], the Darboux matrix D(λ) has been obtained using the
method described in section 3 and is given by

D(λ) =
(

λ−1 − λ−1
1 cos ω −λ−1

1 sin ω

−λ−1
1 sin ω λ−1 + λ−1

1 cos ω

)
, (4.9)

where tan ω
2 = β

α
and (α, β)T is a particular column solution of the Lax pair at λ = λ1. The

corresponding matrix M is

M = λ−1
1

(
cos ω sin ω

sin ω −cos ω

)
, (4.10)

which is traceless and is anti-Hermitian when λ̄1 = −λ1. The one-fold Darboux transformation
(3.17) gives the Darboux transformation on the fields q and r

q[1] = q + iλ−1
1 cos ω, r[1] = r + iλ−1

1 sin ω. (4.11)

By assuming the seed solutions to be ∂xq = 1 and r = 0, the one-soliton solutions turn out to
be

∂xq[1] = 1 + 2sech2

(
2iλ1x − i

λ1
t

)
, r[1] = i

λ1
sech

(
2iλ1x − i

λ1
t

)
, (4.12)

where ∂xq[1] is called a soliton of dark type and r[1] is called a soliton of bright type [8].
To get simpler expressions of the Darboux transformation on scalar solutions

(eigenfunctions) of the Lax pair and the scalar fields q and r, we make a gauge transformation
on the matrix fields S,U and V . Let us introduce a matrix

� = 1√
2

(
1 1
−i i

)
, (4.13)

7
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so that the gauge equivalent matrix field S̃ is given by

S̃ = �−1S� = i

(
0 q + ir

q − ir 0

)
. (4.14)

The Lax pair is then expressed as

∂x

(
X

Y

)
= iλ

(
0 ∂x(q + ir)

∂x(q − ir) 0

)(
X

Y

)
,

∂t

(
X

Y

)
=

(
−ir − i

2λ

− i
2λ

ir

) (
X

Y

)
.

(4.15)

Let X1 and Y1 be the particular scalar solutions of the Lax pair (4.15) at λ = λ1 then the
one-fold Darboux matrix for the Lax pair (4.15) is given by

D̃(λ) =
(

λ−1 −λ−1
1

X1
Y1

−λ−1
1

Y1
X1

λ−1

)
. (4.16)

In other words, the Lax pair (4.15) is covariant under the following Darboux transformations:

X[1] = X(1) − X
(1)
1

Y1
Y = �1(X1, Y1, X, Y )[2]

�2(X1, Y1)[1]
,

Y [1] = Y (1) − Y
(1)
1

X1
X(1) = �2(X1, Y1, X, Y )[2]

�1(X1, Y1)[1]
,

q[1] = q − i

2

(
X

(1)
1

Y1
+

X
(1)
1

Y1

)
= q + ∂t log(�1(X1, Y1)[1]�2(X1, Y1)[1]),

r[1] = r − 1

2

(
X

(1)
1

Y1
− X

(1)
1

Y1

)
= −r + i∂t log

(
�1(X1, Y1)[1]

�2(X1, Y1)[1]

)
,

(4.17)

where we have used the notation X(1) = λ−1X and the determinants �1 and �2 are defined by

�1(X1, Y1, X, Y )[2] =
∣∣∣∣ Y1 Y

X
(1)
1 X(1)

∣∣∣∣ , �2(X1, Y1, X, Y )[2] =
∣∣∣∣ X1 X

Y
(1)
1 Y (1)

∣∣∣∣ ,
�1(X1, Y1)[1] = X1, �2(X1, Y1)[1] = Y1.

Similarly, the two-fold Darboux transformations on scalar solutions X, Y of the Lax pair (4.15)
and q, r of the coupled dispersionless integrable system (4.8) are given by

X[2] = X(1)[1] − X
(1)
1 [1]

Y1[1]
Y [1] = �1(Xk, Yk,X, Y )[3]

�2(Xk, Yk)[2]
,

Y [2] = Y (1) − Y
(1)
1

X1
X(1) = �2(X1, Y1, X, Y )[3]

�1(X1, Y1)[2]
,

q[2] = q[1] − i

2

(
X

(1)
1 [1]

Y1[1]
+

X
(1)
1 [1]

Y1[1]

)
= q + ∂t log (�1(Xk, Yk)[2]�2(Xk, Yk)[2]) ,

r[2] = r[1] − 1

2

(
X

(1)
1 [1]

Y1[1]
− X

(1)
1 [1]

Y1[1]

)
= r + i∂t log

(
�1(Xk, Yk)[2]

�2(Xk, Yk)[2]

)
,

(4.18)
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where for each k = 1, 2 we have assumed Xk , Yk to be particular solutions of the Lax pair
(4.15) at λ = λk and the determinants �1 and �2 are defined by

�1(Xk, Yk,X, Y )[3] =

∣∣∣∣∣∣∣
X1 X2 X

Y
(1)
1 Y

(1)
2 Y (1)

X
(2)
1 X

(2)
2 X(2)

∣∣∣∣∣∣∣ , �2(Xk, Yk,X, Y )[3] =

∣∣∣∣∣∣∣
Y1 Y2 Y

X
(1)
1 X

(1)
2 X(1)

Y
(2)
1 Y

(2)
2 Y (2)

∣∣∣∣∣∣∣ ,
�1(Xk, Yk)[2] =

∣∣∣∣∣ Y1 Y2

X
(1)
1 X

(1)
2

∣∣∣∣∣ , �2(Xk, Yk)[2] =
∣∣∣∣∣ X1 X2

Y
(1)
1 Y

(1)
2

∣∣∣∣∣ .
(4.19)

We can iterate the Darboux transformation N times to arrive at the N-soliton solutions to
the coupled dispersionless integrable system (4.8) expressed in a closed form as ratios of
determinants. For each k = 1, . . . , N , let Xk and Yk be N particular scalar solutions of the
Lax pair at λ = λk respectively then by using the notations X

(k)
j = λ−k

j Xj and X(k) = λ−kX,
we get the following result:

X[N ] = �1(Xk, Yk,X, Y )[N + 1]

�2(Xk, Yk)[N ]
, Y [N ] = �2(Xk, Yk,X, Y )[N + 1]

�1(Xk, Yk)[N ]
, (4.20)

where the determinants are defined by the following expressions. For N odd the determinants
�1 and �2 are given by

�1(Xk, Yk,X, Y )[N + 1] =

∣∣∣∣∣∣∣∣∣∣

Y1 · · · YN Y

...
. . .

...
...

Y
(N−1)
1 · · · Y

(N−1)
N Y (N−1)

X
(N)
1 · · · X

(N)
N X(N)

∣∣∣∣∣∣∣∣∣∣
,

�2(Xk, Yk,X, Y )[N + 1] =

∣∣∣∣∣∣∣∣∣∣

X1 · · · XN X

...
. . .

...
...

X
(N−1)
1 · · · X

(N−1)
N X(N−1)

Y
(N)
1 · · · Y

(N)
N Y (N)

∣∣∣∣∣∣∣∣∣∣
.

(4.21)

For N even we have the following determinants:

�1(Xk, Yk,X, Y )[N + 1] =

∣∣∣∣∣∣∣∣∣∣

X1 · · · XN X

...
. . .

...
...

Y
(N−1)
1 · · · Y

(N−1)
N Y (N−1)

X
(N)
1 · · · X

(N)
N X(N)

∣∣∣∣∣∣∣∣∣∣
,

�2(Xk, Yk,X, Y )[N + 1] =

∣∣∣∣∣∣∣∣∣∣

Y1 · · · YN Y

...
. . .

...
...

X
(N−1)
1 · · · X

(N−1)
N X(N−1)

Y
(N)
1 · · · Y

(N)
N Y (N)

∣∣∣∣∣∣∣∣∣∣
.

(4.22)

Similarly, after performing the Darboux transformation N times, we get the following
expressions of the N-soliton solutions to the couple dispersionless integrable system (4.8):
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q[N ] = q + ∂t log(�1(Xk, Yk)[N ]�2(Xk, Yk)[N ]),

r[N ] = (−1)Nr + i∂t log

(
�1(Xk, Yk)[N ]

�2(Xk, Yk)[N ]

)
.

(4.23)

Since the system (4.8) is equivalent to the sine-Gordon system, therefore, the solutions to
both systems are related to each other. The natural boundary conditions for the system (4.8)
are

∂xq → 1(const.), r → 0, |x| → ∞.

With these boundary conditions, the solution ϕ to the sine-Gordon equation ∂x∂tϕ = 2 sin ϕ

and the solutions q and r to the system (4.8) are related by

∂xq = cos ϕ, r = ± 1
2∂tϕ.

The N-fold Darboux transformation on ϕ is given by

ϕ[N ] = ϕ + 2i log

(
�1(Xk, Yk)[N ]

�2(Xk, Yk)[N ]

)
,

exp(−iϕ[N ]) = exp(−iϕ)

(
�1(Xk, Yk)[N ]

�2(Xk, Yk)[N ]

)2

,

(4.24)

which are the well-known expressions of the N-soliton solutions to the sine-Gordon equation
[23].

5. Concluding remarks

In this paper, we have studied the Darboux transformation on matrix solutions to the generalized
coupled dispersionless integrable system based on a non-Abelian Lie group and expressed
the matrix solutions in terms of quasideterminants. For the particular case of the coupled
dispersionless system which is equivalent to the sine-Gordon equation, we have defined a
Darboux transformation on scalar solutions of the linear problem and expressed them as ratios
of determinants as is the case with the sine-Gordon equation. There are a number of directions
where the present work could be extended and the immediate one is to study the effect of
Moyal non-commutativity of space coordinates on the soliton solutions of the system. Another
interesting direction to pursue is to study the supersymmetric generalization of the generalized
coupled dispersionless integrable system. We shall address these and the related problems in
some later work.
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